《大數(shù)據(jù)Hadoop與Spark架構(gòu)應(yīng)用實(shí)戰(zhàn)》課程詳情
點(diǎn)擊下載課大綱及報(bào)名表
【招生對(duì)象】 對(duì)此課程感興趣的學(xué)員。
根據(jù)黨中央和國務(wù)院“互聯(lián)網(wǎng)+”行動(dòng)計(jì)劃戰(zhàn)略布局,落實(shí)國務(wù)院促進(jìn)大數(shù)據(jù)發(fā)展行動(dòng)綱要,響應(yīng)工業(yè)和信息化部培養(yǎng)大數(shù)據(jù)技術(shù)高端人才的號(hào)召,中國電子標(biāo)準(zhǔn)協(xié)會(huì)特推出了大數(shù)據(jù)平臺(tái)Hadoop與Spark架構(gòu)技術(shù)及應(yīng)用實(shí)戰(zhàn)課程培訓(xùn)班。通過專業(yè)的大數(shù)據(jù)Hadoop與Spark技術(shù)架構(gòu)體系與業(yè)界真實(shí)案例來全面提升大數(shù)據(jù)項(xiàng)目高管、大數(shù)據(jù)平臺(tái)架構(gòu)師,以及大數(shù)據(jù)開發(fā)工程師與大數(shù)據(jù)應(yīng)用設(shè)計(jì)人員的專業(yè)水平,旨在培養(yǎng)專業(yè)的大數(shù)據(jù)Hadoop與Spark技術(shù)架構(gòu)專家,培養(yǎng)大數(shù)據(jù)技術(shù)和應(yīng)用創(chuàng)新型人才,促進(jìn)大數(shù)據(jù)技術(shù)在各行業(yè)內(nèi)部及跨行業(yè)進(jìn)行實(shí)施應(yīng)用,以及企事業(yè)單位的大數(shù)據(jù)項(xiàng)目開發(fā)和落地,并利用大數(shù)據(jù)提升競爭力優(yōu)勢(shì),F(xiàn)將相關(guān)事宜通知如下:
一、 培訓(xùn)特色
1. 課程培訓(xùn)業(yè)界最流行、應(yīng)用最廣泛的Hadoop與Spark大數(shù)據(jù)技術(shù)體系。強(qiáng)化大數(shù)據(jù)平臺(tái)的分布式集群架構(gòu)和核心關(guān)鍵技術(shù)實(shí)現(xiàn)、大數(shù)據(jù)應(yīng)用項(xiàng)目開發(fā)和大數(shù)據(jù)集群運(yùn)維實(shí)踐、以及Hadoop與Spark大數(shù)據(jù)項(xiàng)目應(yīng)用開發(fā)與調(diào)優(yōu)的全過程沙盤模擬實(shí)戰(zhàn)。
2. 通過一個(gè)完整的大數(shù)據(jù)開發(fā)項(xiàng)目及一組實(shí)際項(xiàng)目訓(xùn)練案例,完全覆蓋Hadoop與Spark生態(tài)系統(tǒng)平臺(tái)的應(yīng)用開發(fā)與運(yùn)維實(shí)踐。課堂實(shí)踐項(xiàng)目以項(xiàng)目小組的形式進(jìn)行沙盤實(shí)操練習(xí),重點(diǎn)強(qiáng)化理解Hadoop與Spark大數(shù)據(jù)項(xiàng)目各個(gè)階段的工作重點(diǎn),同時(shí)掌握作為大數(shù)據(jù)項(xiàng)目管理者的基本技術(shù)與業(yè)務(wù)素養(yǎng)。
3. 本課程的授課師資都是有著多年在一線從事Hadoop與Spark大數(shù)據(jù)項(xiàng)目的資深講師,采用原理技術(shù)剖析和實(shí)戰(zhàn)案例相結(jié)合的方式開展互動(dòng)教學(xué)、強(qiáng)化以建立大數(shù)據(jù)項(xiàng)目解決方案為主體的應(yīng)用開發(fā)、技術(shù)討論與交流咨詢,在學(xué)習(xí)的同時(shí)促進(jìn)講師學(xué)員之間的交流,讓每個(gè)學(xué)員都能在課程培訓(xùn)過程中學(xué)到實(shí)實(shí)在在的大數(shù)據(jù)技術(shù)知識(shí)體系,以及大數(shù)據(jù)技術(shù)應(yīng)用實(shí)戰(zhàn)技能,具備實(shí)際大數(shù)據(jù)應(yīng)用項(xiàng)目的動(dòng)手開發(fā)實(shí)踐與運(yùn)維管理部署能力。授課過程中,根據(jù)學(xué)員需求,增設(shè)交流環(huán)節(jié),可將具體工作中遇到的實(shí)際問題展開討論,講師會(huì)根據(jù)學(xué)員的實(shí)際情況微調(diào)授課內(nèi)容,由講師帶著全部學(xué)員積極討論,并給出一定的時(shí)間讓學(xué)員上臺(tái)發(fā)言,現(xiàn)場剖析問題的癥結(jié),規(guī)劃出可行的解決方案。
二、 培訓(xùn)目標(biāo)
通過本次課程的培訓(xùn),學(xué)員可達(dá)到如下目標(biāo):
1. 深刻理解在“互聯(lián)網(wǎng)+”時(shí)代下大數(shù)據(jù)的產(chǎn)生背景、發(fā)展歷程和演化趨勢(shì);
2. 了解業(yè)界市場需求和國內(nèi)外最新的大數(shù)據(jù)技術(shù)潮流,洞察大數(shù)據(jù)的潛在價(jià)值,;
3. 理解大數(shù)據(jù)項(xiàng)目解決方案及業(yè)界大數(shù)據(jù)應(yīng)用案例,從而為企業(yè)在大數(shù)據(jù)項(xiàng)目中的技術(shù)選型及技術(shù)架構(gòu)設(shè)計(jì)提供決策參考;
4. 全面掌握業(yè)界最流行的Hadoop與Spark大數(shù)據(jù)技術(shù)體系;
5. 掌握大數(shù)據(jù)采集技術(shù);
6. 掌握大數(shù)據(jù)分布式存儲(chǔ)技術(shù);
7. 掌握NoSQL與NewSQL分布式數(shù)據(jù)庫技術(shù);
8. 掌握大數(shù)據(jù)倉庫與統(tǒng)計(jì)機(jī)器學(xué)習(xí)技術(shù);
9. 掌握大數(shù)據(jù)分析挖掘與商業(yè)智能(BI)技術(shù);
10. 掌握大數(shù)據(jù)離線處理技術(shù);
11. 掌握Storm流式大數(shù)據(jù)處理技術(shù);
12. 掌握基于內(nèi)存計(jì)算的大數(shù)據(jù)實(shí)時(shí)處理技術(shù);
13. 掌握大數(shù)據(jù)管理技術(shù)的原理知識(shí)和應(yīng)用實(shí)戰(zhàn);
14. 深入理解大數(shù)據(jù)平臺(tái)技術(shù)架構(gòu)和使用場景;
15. 嫻熟地運(yùn)用Hadoop與Spark大數(shù)據(jù)技術(shù)體系規(guī)劃解決方案滿足實(shí)際項(xiàng)目需求;
16. 掌握如何部署符合生產(chǎn)環(huán)境要求的Hadoop大數(shù)據(jù)集群;
17. 熟練地掌握基于Hadoop與Spark大數(shù)據(jù)平臺(tái)進(jìn)行應(yīng)用程序開發(fā)、集群運(yùn)維管理和性能調(diào)優(yōu)技巧。
三、 課程大綱
時(shí)間 課程模塊 課程內(nèi)容
第一天上午 大數(shù)據(jù)技術(shù)基礎(chǔ)
1. 大數(shù)據(jù)的產(chǎn)生背景、發(fā)展歷程
2. 大數(shù)據(jù)和云計(jì)算的關(guān)系
3. 大數(shù)據(jù)應(yīng)用需求以及潛在價(jià)值分析
4. 業(yè)界最新的大數(shù)據(jù)技術(shù)發(fā)展態(tài)勢(shì)與應(yīng)用趨勢(shì)
5. 大數(shù)據(jù)項(xiàng)目的技術(shù)選型與架構(gòu)設(shè)計(jì)
6. “互聯(lián)網(wǎng)+”時(shí)代下的電子商務(wù)、制造業(yè)、零售批發(fā)業(yè)、電信運(yùn)營商、互聯(lián)網(wǎng)金融業(yè)、網(wǎng)上銀行、電子政務(wù)、移動(dòng)互聯(lián)網(wǎng)、教育信息化等行業(yè)應(yīng)用實(shí)踐與應(yīng)用案例剖析
業(yè)界主流的大數(shù)據(jù)技術(shù)產(chǎn)品與項(xiàng)目解決方案
1. 國內(nèi)外主流的大數(shù)據(jù)解決方案介紹
2. 當(dāng)前大數(shù)據(jù)解決方案與傳統(tǒng)數(shù)據(jù)庫方案的剖析比較
3. Apache大數(shù)據(jù)平臺(tái)方案剖析
4. CDH大數(shù)據(jù)平臺(tái)方案剖析
5. HDP大數(shù)據(jù)平臺(tái)方案剖析
6. 開源的大數(shù)據(jù)生態(tài)系統(tǒng)平臺(tái)剖析
Hadoop大數(shù)據(jù)平臺(tái)剖析
1. Hadoop的發(fā)展歷程以及產(chǎn)業(yè)界的實(shí)際應(yīng)用介紹
2. Hadoop大數(shù)據(jù)平臺(tái)架構(gòu)
3. 基于Hadoop平臺(tái)的PB級(jí)大數(shù)據(jù)存儲(chǔ)管理與分析處理的工作原理與機(jī)制
4. Hadoop的核心組件剖析
第一天下午 大數(shù)據(jù)分布式存儲(chǔ)系統(tǒng)原理及其應(yīng)用實(shí)踐
1. 分布式文件系統(tǒng)HDFS的簡介
2. HDFS系統(tǒng)的主從式平臺(tái)架構(gòu)和工作原理
3. HDFS核心組件技術(shù)講解
4. 基于HDFS的大型存儲(chǔ)系統(tǒng)應(yīng)用開發(fā)實(shí)戰(zhàn)
5. HDFS集群的安裝、部署、配置與性能優(yōu)化實(shí)踐
6. HDFS與Linux NFS3交互技術(shù)以及本地化部署應(yīng)用實(shí)踐
7. 分布式鍵值存儲(chǔ)系統(tǒng)的平臺(tái)架構(gòu)、核心技術(shù)以及應(yīng)用開發(fā)
8. PB級(jí)大數(shù)據(jù)存儲(chǔ)項(xiàng)目的案例分析
大數(shù)據(jù)MapReduce與Yarn并行處理平臺(tái)
1. MapReduce并行計(jì)算模型
2. MapReduce作業(yè)執(zhí)行與調(diào)度技術(shù)
3. 第二代大數(shù)據(jù)計(jì)算框架Yarn的工作原理以及DAG并行執(zhí)行機(jī)制
4. MapReduce應(yīng)用開發(fā)環(huán)境的部署,以及大數(shù)據(jù)并行處理應(yīng)用程序開發(fā)
5. MapReduce高級(jí)編程技巧與性能優(yōu)化實(shí)踐
6. MapReduce與Yarn大數(shù)據(jù)分析處理案例分析
Hadoop應(yīng)用實(shí)踐操作訓(xùn)練
1. 部署與配置HDFS,熟練操作HDFS SHELL,HDFS與NFS操作,以及HDFS API開發(fā)實(shí)踐
2. 部署與配置MapReduce與Yarn及其開發(fā)實(shí)踐
3. Hadoop的Linux二次開發(fā)環(huán)境部署與配置
第二天上午 HBase分布式數(shù)據(jù)庫管理系統(tǒng)
1. NoSQL數(shù)據(jù)庫與NewSQL數(shù)據(jù)庫技術(shù)介紹,及其在半結(jié)構(gòu)化和非結(jié)構(gòu)化大數(shù)據(jù)方面的應(yīng)用實(shí)踐
2. HBase分布式數(shù)據(jù)庫簡介、數(shù)據(jù)模型以及工作原理
3. HBase分布式數(shù)據(jù)庫集群的平臺(tái)架構(gòu)和關(guān)鍵技術(shù)剖析
4. HBase應(yīng)用項(xiàng)目開發(fā)技巧,以及客戶端開發(fā)實(shí)戰(zhàn)
5. HBase表設(shè)計(jì)與數(shù)據(jù)操作以及數(shù)據(jù)庫管理API調(diào)用
6. HBase集群的安裝部署與配置優(yōu)化
7. ZooKeeper分布式協(xié)調(diào)服務(wù)系統(tǒng)的工作原理、平臺(tái)架構(gòu)、集群部署與配置應(yīng)用實(shí)戰(zhàn)
8. HBase集群的運(yùn)維與監(jiān)控管理
HBase半結(jié)構(gòu)化數(shù)據(jù)管理應(yīng)用實(shí)踐操作訓(xùn)練
1. 部署與配置HBase集群以及HBase的性能優(yōu)化
2. 部署與配置ZooKeeper分布式集群
3. 構(gòu)建HBase開發(fā)環(huán)境
4. HBase數(shù)據(jù)庫操作及項(xiàng)目實(shí)踐
第二天下午 Hive大型數(shù)據(jù)倉庫集群平臺(tái)及其應(yīng)用實(shí)踐
1. 基于Hadoop的大型分布式數(shù)據(jù)倉庫基礎(chǔ)知識(shí),HIVE在行業(yè)中的數(shù)據(jù)倉庫應(yīng)用案例
2. Hive大數(shù)據(jù)倉庫簡介以及應(yīng)用介紹
3. Hive數(shù)據(jù)倉庫集群的平臺(tái)體系結(jié)構(gòu)、核心技術(shù)剖析
4. Hive Server的工作原理、機(jī)制與應(yīng)用
5. Hive數(shù)據(jù)倉庫集群的安裝部署與配置優(yōu)化
6. Hive應(yīng)用開發(fā)技巧
7. Hive SQL剖析與應(yīng)用實(shí)踐
8. Hive數(shù)據(jù)倉庫表與表分區(qū)、表操作、數(shù)據(jù)導(dǎo)入導(dǎo)出、客戶端操作技巧
9. Hive數(shù)據(jù)倉庫報(bào)表設(shè)計(jì)
10. Hive JDBC與ODBC的工作原理與實(shí)現(xiàn)機(jī)制
11. Hive HWI、CLI客戶端操作以及UDF應(yīng)用實(shí)踐
Mahout大數(shù)據(jù)分析挖掘平臺(tái)及其應(yīng)用實(shí)踐
1. Mahout集群的安裝部署與配置優(yōu)化
2. Mahout實(shí)現(xiàn)客戶分析,廣告分析,日志分析,規(guī)律預(yù)測(cè),關(guān)聯(lián)分析,定向推薦等應(yīng)用程序的開發(fā)與應(yīng)用實(shí)戰(zhàn)
3. Mahout性能優(yōu)化與分析挖掘算法參數(shù)的優(yōu)化技巧
Hive數(shù)據(jù)倉庫與Mahout數(shù)據(jù)挖掘平臺(tái)的應(yīng)用實(shí)踐操作訓(xùn)練 1. 部署與配置HIVE集群,以及HIVE性能調(diào)優(yōu)
2. 構(gòu)建HIVE開發(fā)環(huán)境
3. HIVE數(shù)據(jù)倉庫操作及項(xiàng)目實(shí)踐
4. 實(shí)現(xiàn)Mahout與Hadoop HBase的應(yīng)用集成,實(shí)現(xiàn)日志數(shù)據(jù)分析挖掘項(xiàng)目的應(yīng)用實(shí)踐
第三天上午 Spark大數(shù)據(jù)實(shí)時(shí)處理平臺(tái)剖析
1. Spark的發(fā)展歷程以及業(yè)界的實(shí)際應(yīng)用介紹
2. Spark實(shí)時(shí)大數(shù)據(jù)處理平臺(tái)架構(gòu)
3. Spark RDD內(nèi)存彈性分布式數(shù)據(jù)集的工作原理與機(jī)制
4. Spark的核心組件剖析
5. 基于Spark的實(shí)時(shí)數(shù)據(jù)倉庫與實(shí)時(shí)分析挖掘處理在行業(yè)中的應(yīng)用實(shí)踐案例
基于Spark的實(shí)時(shí)數(shù)據(jù)倉庫和實(shí)時(shí)數(shù)據(jù)分析挖掘處理平臺(tái)的實(shí)現(xiàn)機(jī)制,以及SparkSQL,Spark Streaming,MLib,GraphX,SparkR的應(yīng)用實(shí)踐
1. 內(nèi)存計(jì)算模型和實(shí)時(shí)處理技術(shù)介紹
2. Spark中各個(gè)分布式組件的處理框架及工作原理
3. Spark SQL實(shí)時(shí)數(shù)據(jù)倉庫的實(shí)現(xiàn)原理機(jī)制及應(yīng)用實(shí)踐
4. Spark Streaming流式數(shù)據(jù)實(shí)時(shí)處理機(jī)制及應(yīng)用實(shí)踐
5. Spark MLib實(shí)時(shí)機(jī)器學(xué)習(xí)算法應(yīng)用實(shí)踐與案例應(yīng)用
6. Spark GraphX實(shí)時(shí)圖數(shù)據(jù)處理應(yīng)用實(shí)踐與社交網(wǎng)絡(luò)分析應(yīng)用案例
7. SparkR的實(shí)現(xiàn)原理與應(yīng)用實(shí)踐
8. Spark組件的應(yīng)用編程開發(fā)實(shí)戰(zhàn)
9. Spark與Hadoop的集成解決方案實(shí)踐
Spark平臺(tái)與各個(gè)組件的實(shí)踐操作訓(xùn)練
1. 部署與配置Spark集群,以及Spark性能調(diào)優(yōu)
2. 構(gòu)建Spark開發(fā)環(huán)境
3. Spark程序運(yùn)行以及操作
4. Spark SQL應(yīng)用操作實(shí)訓(xùn)
5. Spark Streaming應(yīng)用操作實(shí)訓(xùn)
6. Spark MLib應(yīng)用操作實(shí)訓(xùn)
7. Spark GraphX應(yīng)用操作實(shí)訓(xùn)
8. SparkR應(yīng)用操作實(shí)訓(xùn)
9. Spark與HBase集成數(shù)據(jù)分析實(shí)驗(yàn)實(shí)訓(xùn)
第三天下午 Storm流式數(shù)據(jù)處理平臺(tái)架構(gòu)及其應(yīng)用實(shí)踐
1. Storm流式處理系統(tǒng)的平臺(tái)架構(gòu)和工作原理
2. Storm關(guān)鍵技術(shù)剖析
3. Storm集群安裝部署與配置優(yōu)化
4. Storm日志流數(shù)據(jù)分析項(xiàng)目應(yīng)用實(shí)戰(zhàn)
5. Storm和Hadoop,Spark的應(yīng)用集成項(xiàng)目實(shí)踐
大數(shù)據(jù)智能化ETL操作工具以及Hadoop集群運(yùn)維監(jiān)控工具平臺(tái)應(yīng)用
1. Hadoop與DBMS之間數(shù)據(jù)交互工具的應(yīng)用
2. Sqoop導(dǎo)入導(dǎo)出數(shù)據(jù)的工作原理,以及Sqoop集群安裝部署與配置
3. Kettle集群的平臺(tái)架構(gòu)、核心技術(shù)工作原理以及應(yīng)用案例
4. Kettle大數(shù)據(jù)ETL工具的部署與配置,以及應(yīng)用實(shí)戰(zhàn)
5. 利用Sqoop實(shí)現(xiàn)MySQL與Hadoop集群之間的數(shù)據(jù)導(dǎo)入導(dǎo)出交互程序
6. Hadoop大數(shù)據(jù)運(yùn)維監(jiān)控管理系統(tǒng)HUE平臺(tái)的安裝部署與應(yīng)用配置
7. Hadoop運(yùn)維管理監(jiān)控系統(tǒng)Ambari平臺(tái)的安裝部署與應(yīng)用配置
8. Hadoop集群運(yùn)維系統(tǒng)Ganglia, Nagios的安裝部署與應(yīng)用配置
大數(shù)據(jù)分布式采集與分布式消息訂閱系統(tǒng)及其應(yīng)用實(shí)踐(可選)
1. Flume-NG數(shù)據(jù)采集系統(tǒng)的數(shù)據(jù)流模型、平臺(tái)架構(gòu)、集群部署與配置應(yīng)用實(shí)戰(zhàn)
2. Kafka分布式消息訂閱系統(tǒng)的應(yīng)用介紹、平臺(tái)架構(gòu)、集群部署與配置應(yīng)用實(shí)戰(zhàn)
內(nèi)存數(shù)據(jù)庫管理系統(tǒng)及其應(yīng)用實(shí)踐(可選)
1. Impala實(shí)時(shí)查詢系統(tǒng)平臺(tái)架構(gòu)、核心關(guān)鍵技術(shù)剖析
2. Impala實(shí)時(shí)查詢系統(tǒng)的部署與應(yīng)用開發(fā)實(shí)踐
3. Redis內(nèi)存數(shù)據(jù)庫集群架構(gòu)以及核心技術(shù)剖析
4. Redis集群的部署與應(yīng)用開發(fā)實(shí)戰(zhàn)與案例分析
Cassandra數(shù)據(jù)管理系統(tǒng)應(yīng)用實(shí)踐(可選)
1. Cassandra集群的平臺(tái)架構(gòu)以及核心關(guān)鍵技術(shù)
2. Cassandra一致性哈希算法與數(shù)據(jù)對(duì)象分布策略
3. Cassandra集群的安裝部署與配置優(yōu)化
4. Cassandra應(yīng)用開發(fā)實(shí)戰(zhàn)與案例分析
大數(shù)據(jù)項(xiàng)目應(yīng)用完整實(shí)踐與咨詢討論
1. 根據(jù)講師布置的實(shí)際應(yīng)用案例,開展大數(shù)據(jù)完整項(xiàng)目部署設(shè)計(jì)和應(yīng)用開發(fā)實(shí)踐
2. 大數(shù)據(jù)項(xiàng)目的需求分析、應(yīng)用實(shí)施以及解決方案分享咨詢與交流討論
培訓(xùn)費(fèi)用
5800 元/人(含培訓(xùn)費(fèi)、考試費(fèi)、證書費(fèi)、資料費(fèi)、午餐) 食宿統(tǒng)一安排,費(fèi)用自理。
請(qǐng)學(xué)員帶一寸彩照二張(背面注明姓名),身份證復(fù)印件一張。
《大數(shù)據(jù)Hadoop與Spark架構(gòu)應(yīng)用實(shí)戰(zhàn)》所屬分類
特色課程
《大數(shù)據(jù)Hadoop與Spark架構(gòu)應(yīng)用實(shí)戰(zhàn)》所屬專題
excel培訓(xùn)、
營銷數(shù)據(jù)分析、
新媒體營銷培訓(xùn)、
分析銷售數(shù)據(jù)、
《大數(shù)據(jù)Hadoop與Spark架構(gòu)應(yīng)用實(shí)戰(zhàn)》授課培訓(xùn)師簡介
專家
鐘老師
現(xiàn)任職于中科院某研究所,高級(jí)工程師,副高職稱,項(xiàng)目組負(fù)責(zé)人,博士畢業(yè)于中國科學(xué)院計(jì)算技術(shù)研究所,獲工學(xué)博士學(xué)位(計(jì)算機(jī)系統(tǒng)結(jié)構(gòu)方向)。中國電子標(biāo)準(zhǔn)協(xié)會(huì)的大數(shù)據(jù)、云計(jì)算、移動(dòng)互聯(lián)網(wǎng)系列課程建設(shè)與教學(xué)專家。近六年來帶領(lǐng)團(tuán)隊(duì)主要從事大數(shù)據(jù)與云計(jì)算技術(shù)項(xiàng)目的研發(fā)與IT項(xiàng)目管理工作。鐘老師有著多年的企業(yè)內(nèi)訓(xùn)和公開課培訓(xùn)講師經(jīng)歷,主要講授大數(shù)據(jù)平臺(tái)技術(shù)、云計(jì)算、移動(dòng)互聯(lián)網(wǎng)、電子商務(wù)、IT信息軟件項(xiàng)目管理、企業(yè)信息化規(guī)劃與管理、IT戰(zhàn)略規(guī)劃與企業(yè)架構(gòu)、數(shù)據(jù)中心主機(jī)規(guī)劃與IDC系統(tǒng)運(yùn)營等企業(yè)實(shí)戰(zhàn)類培訓(xùn)課程。鐘老師將原理技術(shù)剖析和應(yīng)用實(shí)戰(zhàn)相結(jié)合的授課風(fēng)格受到廣大公開課學(xué)員和企業(yè)內(nèi)訓(xùn)學(xué)員的歡迎。
蔣老師
清華大學(xué)博士,云計(jì)算專家 熟悉主流的云計(jì)算平臺(tái),并有商業(yè)與開源云計(jì)算平臺(tái)的實(shí)踐經(jīng)驗(yàn),對(duì)云計(jì)算關(guān)鍵技術(shù)有深刻了解和實(shí)踐經(jīng)驗(yàn),如分布式系統(tǒng)、虛擬化、分布式文件系統(tǒng)、云存儲(chǔ)等,參與并領(lǐng)導(dǎo)多個(gè)大型云計(jì)算項(xiàng)目。對(duì)大數(shù)據(jù)關(guān)鍵技術(shù)有深刻了解和實(shí)踐經(jīng)驗(yàn),如NoSQL數(shù)據(jù)庫、大數(shù)據(jù)處理、Hadoop、Hive、HBase、Spark等。
錢老師
大數(shù)據(jù)專家。在電信、電力、金融行業(yè)從事Java開發(fā)和架構(gòu)設(shè)計(jì)的工作;資深云計(jì)算研發(fā)工程師。作為項(xiàng)目的主要成員和負(fù)責(zé)人參與并領(lǐng)導(dǎo)完成了多個(gè)大型復(fù)雜項(xiàng)目,并成功應(yīng)用于行業(yè)解決方案,如海量數(shù)據(jù)匹配系統(tǒng)、電力行業(yè)實(shí)時(shí)數(shù)據(jù)采集分析系統(tǒng)等。設(shè)計(jì)并實(shí)現(xiàn)了實(shí)時(shí)索引系統(tǒng)-云搜,成功應(yīng)用與某國企知識(shí)庫系統(tǒng)。并可應(yīng)用與互聯(lián)網(wǎng)行業(yè)的搜索等應(yīng)用。完成多個(gè)云計(jì)算解決方案的架構(gòu),涉及到金融行業(yè)海量數(shù)據(jù)分析與數(shù)據(jù)處理系統(tǒng)、海量日志分析系統(tǒng)、電力用電信息統(tǒng)計(jì)系統(tǒng)等,獲得業(yè)界認(rèn)可